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Abstract. Quantum Hall effect wavefunctions corresponding to the filling factors 1/2p +
1, 2/2p+1, . . . ,2p/2p+1, 1, are shown to form a basis of irreducible cyclic representations of
the quantum algebraUq(sl(2)) at q2p+1 = 1. Thus, the wavefunctions9P/Q possessing filling
factorsP/Q < 1 whereQ is odd andP,Q are relatively prime integers are classified in terms
of Uq(sl(2)).

1. Introduction

The microscopic theory of the fractional quantum Hall effect (QHE) is not well established.
Its theoretical understanding is mostly due to trial wavefunctions [1]. For filling factors
1/m wherem is an odd integer, trial wavefunctions were given by Laughlin [2]. Trial
wavefunctions for the other filling factorsν = P/Q < 1, whereP,Q are relatively prime
integers andQ is odd, were constructed in terms of some hierarchy schemes [3, 4] where
they were obtained from a parent state which is a fulfilled Landau level or a Laughlin
wavefunction. However, general properties of the QHE should be independent of the explicit
form of trial wavefunctions, but depend on their universal features as their orthogonality.

We utilize orthogonality of QHE states for different filling factors, independent of their
explicit form, to show that they can be classified as irreducible cyclic representations of
Uq(sl(2)) at roots of unity. In our scheme, states corresponding to filling factors possessing
a common denominator are in the same representation.

AlthoughUq(sl(2)) structures were found in the Hofstadter problem [5], in the Landau
problem [6], for Laughlin wavefunctions [7] and in the QHE [8], the approach presented here
does not have any relation to them. (i) In all of the previous works dealing with flat surfaces,
generators of the deformed algebra were constructed in terms of magnetic translations. The
construction presented here cannot be written in terms of magnetic transformations. (ii)
Here, wavefunctions possessing different filling factors which have a common denominator
are treated on the same footing. However, in the other works only one state is considered
and the theories were built on them without mixing different states with different parameters
which correspond to filling factors in the QHE case.

First, we show explicitly that the wavefunctions corresponding to the filling factors
ν = 1

3,
2
3, 1, can be considered as the basis of cyclic irreducible representations of the

quantum algebraUq(sl2) at q3 = 1. Then, the general case is studied. Conclusions are
presented in the final section.
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2. Cyclic representation ofUq(sl(2))

The deformed algebraUq(sl(2))

[E+, E−] = K −K−1

q − q−1

KE±K−1 = q±2E±

(1)

at roots of unity, i.e.q2p+1 = 1, p is a positive integer, has a finite-dimensional irreducible
representation which has no classical finite-dimensional analogue. This is the cyclic
representation whose dimension is 2p + 1 [9]. Cyclic means that there are no highest
or lowest weight states in the spectrum, i.e.E+| . . .〉 6= 0 andE−| . . .〉 6= 0 for any state.

Whenq2p+1 = 1 irreducible cyclic representation ofUq(sl(2)) can be written in some
basis{v0, v1, . . . , v2p} as

Kvm = λq−2mvm

E+vm = gmvm+1

E−vm = fmvm−1

(2)

wherem = 0, . . . ,2p, and we definedv0 ≡ v2p+1, v−1 ≡ v2p. λ, gm and fm are some
complex constants which are nonzero and in the case of requesting that the representation
in unitary, we should restrict their values such that

K† = K−1 E
†
− = E+. (3)

Although, for the purposes of this work there is no need to discuss in detail neither
how unitary representations arise in the general framework nor values of Casimir operators,
let us denote that there are three independent Casimir operators ofUq(sl(2)) at q2p+1 = 1:
K2p+1, E2p+1

+ andE2p+1
− .

3. Classification ofν = 1, 1
3,

2
3 states

WhenN particles (electrons) move on a plane in a perpendicular magnetic field we may
consider the wavefunctions [2, 10]

ψ1(z1, . . . , zN) = N1e−
1
2

∑N
k=1 |zk |2

N∏
i<j

(zi − zj ) (4)

ψ1/3(z1, . . . , zN) = N2e−
1
2

∑N
k=1 |zk |2

N∏
i<j

(zi − zj )3 (5)

ψ2/3(z1, . . . , zN) = N3

∫
d2zN+1 . . .d

2zN+Me−
1
2

∑N+M
K=1 |zK |2

M∏
l<n

(z̄N+l − z̄N+n)3
N+M∏
I<J

(zI − zJ )

(6)

which possess the following values of the angular momentumL,

L[ψ1(z1, . . . , zN)] = N(N − 1)

2

L[ψ1/3(z1, . . . , zN)] = 3
N(N − 1)

2

L[ψ2/3(z1, . . . , zN)] = (N +M)(N +M − 1)

2
− 3

M(M − 1)

2
.
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It is supposed thatN is large and we takeM = N/2.
Filling factors of theN particle states are given in the thermodynamical limit as

ν ≡ lim
N→∞

N(N − 1)

2L
. (7)

Hence, filling factors of the wavefunctions (4)–(6) are

ν(ψ1) = 1 ν(ψ1/3) = 1
3 ν(ψ2/3) = 2

3. (8)

Indeed, (4) is the wavefunction when the lowest Landau level is fully filled and (5) and
(6) are the trial wavefunctions which describe the QHE at the filling factors1

3,
2
3.

By using ∫
d2z e−|z|

2
z̄mzn = δm,n (9)

one can observe that the wavefunctions which possess different angular momentum values
are orthogonal. Moreover, by choosing the normalization constantsNa appropriately the
wavefunctions (4)–(6) can be taken to satisfy (N > 2)

(ψσ , ψρ) ≡
∫

d2z1 . . .d
2zN ψ̄σ (z1, . . . , zN)ψρ(z1, . . . , zN) = δσ,ρ (10)

whereσ, ρ = 1, 1
3,

2
3.

If ν̂ denotes the first quantized operator corresponding to the filling factorν, one can
construct the physical operator

k̂ ≡ e2π iν̂ (11)

which will be shown to play the main role in classifying QHE wavefunctions in terms of
Uq(sl(2)) at roots of unity.

In a second quantized theory, operators corresponding to physical operators of the first
quantization will be given in terms of states spanning the related field theory. Let us deal
with the states, corresponding to (4)–(6),

|σ 〉 ≡
∫

d2z1 . . .d
2zN e−

1
2

∑N
k=1 |zk |2ψσ (z1, . . . , zN)|z1, . . . , zN 〉 (12)

where

|z1, . . . , zN >= 1√
N !
ϕ†(z1) . . . ϕ

†(zN)|0〉. (13)

The fermionic operatorsϕ(z), ϕ†(z) satisfy the anticommutation relation

{ϕ†(z), ϕ(z′)} = ez
′ z̄.

The states (12) are orthonormal:

〈σ |ρ〉 = δσ,ρ. (14)

The second quantized operator

k = e2π i |1〉〈1| + e2π i/3| 13〉〈 13| + e4π i/3| 23〉〈 23| (15)

corresponds to the first quantized physical operator (11). In terms of the vector(|1〉, | 13〉, | 23〉)
and the scalar product defined in (14), one can obtain the representation

k =
( 1 0 0

0 q̃ 0
0 0 q̃2

)
(16)
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whereq̃ = exp(2π i/3), i.e.

q̃3 = 1.

Moreover, we can construct the operators

e+ = a1| 13〉〈1| + a2| 23〉〈 13| + a3|1〉〈 23| (17)

e− = b1|1〉〈 13| + b2| 13〉〈 23| + b3| 23〉〈1| (18)

whose representations are

e+ =
( 0 a1 0

0 0 a2

a3 0 0

)
e− =

( 0 0 b3

b1 0 0
0 b2 0

)
. (19)

One can show that (16) and (19) realize theUq(sl(2)) algebra

[e+, e−] = k − k−1

q̃ − q̃−1
ke±k−1 = q̃±2e± (20)

if the coefficients satisfy

a1b1− a3b3 = 0

a2b2− a1b1 = 1

a3b3− a2b2 = −1.

(21)

If one demands that the representation (16), (19) is unitary:

k−1 = k† e+† = e− (22)

the coefficientsal, bl should be taken as

b1 = ā1 b2 = ā2 b3 = ā3. (23)

Then conditions (21) lead to

|a1|2 = |a3|2 = |a2|2− 1 al 6= 0. (24)

Observe that the Casimir operators

k3 = 1 e3
+ = a1a2a31 e3

− = b1b2b31

are proportional to identity.
An explicit realization is presented in terms of the trial wavefunctions (4)–(6). However,

the construction depends only on the orthogonality of the states of the QHE for different
values of the filling factors and the existence of the physical operator (11). This will be
clarified in the next section.

4. The general case

QHE trial wavefunctions in the standard hierarchy scheme are given by [3, 11]

ψν(z1, . . . , zN0) =
∫ r∏

α=1

Nα∏
iα=1

[d2z
(α)
iα

]e−
1
2

∑N0
1 |zk |2

r∏
β=0

Nβ∏
iβ<jβ

(z
(β)

iβ
− z(β)jβ

)aβ

×
Nβ+1,Nβ∏
iβ+1,jβ=1

(z
(β+1)
iβ+1
− z(β)jβ

)bβ,β+1 (25)

where z(0)i0 ≡ zi . The measure
∏

[d2z
(α)
iα

] depends onaβ and |z(β)iβ − z
(β)

jβ
|, however, the

detailed form of it does not affect the filling factorν = P/Q. a0 is an odd positive integer,
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aα for α 6= 0 are even integers which can be positive or negative andbβ+1,β = ±1, except
br,r+1 = 0. By placing theN0 electrons on a spherical surface in a monopole magnetic
field, one can find that filling factor of (25) is given by

ν = 1

a0− 1

a1− 1

· · · − 1

ar

. (26)

Factors with negative powers may be replaced by complex-conjugate factors with positive
powers multiplied by some exponential factors. Hence, (25) can be equivalently given as
[12]

ψν(z1, . . . , zN0) =
∫ r∏

α=1

[ Nα∏
iα=1

d2z
(α)
iα

Nα∏
iα<jα

|z(α)iα − z
(α)
jα
|2(−1)αθαe−|qα |

∑
iα
|z(α)iα |2

]

×e−
1
2

∑N0
1 |zk |2

r∏
β=0

Nβ∏
iβ<jβ

(z̃
(β)

iβ
− z̃(β)jβ

)pβ
Nβ+1,Nβ∏
iβ+1,jβ=1

( ¯̃z(β+1)
iβ+1
− z̃(β)jβ

) (27)

wherez̃(β)iβ = z
(β)

iβ
for β = even and̃z(β)iβ = z̄

(β)

iβ
for β = odd and

θ0 = 0 θr = (−1)r

pr−1− (−1)rθr−1

q0 = −1 qr = (−1)r+1qr−1θr .

Now, the filling factor is

ν = 1

p0+ 1

p1+ 1

· · · + 1

pr

(28)

wherep0 is odd and the otherpi are even integers.
By generalizing the calculations of Laughlin given in [1] and using the scalar product

defined in (10), one can show thatψν states are orthogonal [11].
To emphasize the second quantized character of our construction let us introduce the

states

|i, p〉T =
∫

d2z1 . . .d
2zN0 e−

1
2

∑N0
k=1 |zk |2ψ i

2p+1
(z1, . . . , zN0)|z1, . . . , zN0〉 (29)

wherei = 1, . . . ,2p + 1; p = 1, 2, . . . , so that any filling factorν = P/Q is considered.
We used the vectors (13) withN replaced byN0. The subscriptT denotes the fact that trial
wave functions are used to give an explicit realization.

The states (29) are orthonormal:

T 〈i, p|j, p′〉T = δi,j δp,p′ . (30)

We have shown that the states|i, p〉T are orthonormal by using the explicit form of trial
wavefunctions. However, this should be a universal feature of QHE wavefunctions. Then,
even if we do not know the explicit form, we can say that exact states of the QHE which
we indicate with|i, p〉, should be orthonormal:

〈i, p|j, p′〉 = δi,j δp,p′ . (31)
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Indeed, in the following we will use this universal property of QHE states without referring
to any trial wavefunction.

To generalize the construction given in section 3, let us deal with the states

|1, p〉, |2, p〉, . . . , |2p, p〉, |2p + 1, p〉 (32)

corresponding to the filling factors, respectively,

ν = 1

2p + 1
,

2

2p + 1
, . . . ,

2p

2p + 1
, 1. (33)

Define the following second quantized operators acting in the space spanned by the
states (32),

K̃ =
2p+1∑
i=1

qi |i, p〉〈i, p| (34)

Ẽ+ =
2p+1∑
i=1

ai |i, p〉〈i + 2, p| (35)

Ẽ− =
2p+1∑
i=1

āi |i + 2, p〉〈i, p| (36)

where

q2p+1 = 1. (37)

To obtain the compact forms we adopted the definitions

|2p + 2, p〉 ≡ |1, p〉, |2p + 3, p〉 ≡ |2, p〉.
By using the orthonormality condition (30) one observes that the inverse ofK̃ is

K̃−1 =
2p+1∑
i=1

q−i |i, p〉〈i, p| = K̃†. (38)

The coefficientsai are nonzero and satisfy

|a2p+1|2− |a2p−1|2 = 0

|a2p|2− |a2p−2|2 = −1

|al+2|2− |al|2 = ql+2− q−l−2

q − q−1

where l = −1, 0, . . . , (2p − 3); a−1 ≡ a2p, a0 ≡ a2p+1. Then, in terms of the basis
(|1, p〉, . . . , |2p + 1, p〉) the operators (34)–(36) lead to a(2p + 1)-dimensional unitary
irreducible cyclic representation ofUq(sl(2)) at q satisfying (37).

Note that the Casimir operators are proportional to unity as before:K̃2p+1 = 1 and
Ẽ

2p+1
+ = Ẽ†2p+1

− = (∏2p+1
i=1 ai)1.

5. Discussions

It is shown that QHE wavefunctions can be classified as irreducible cyclic representations
of Uq(sl(2)) at roots of unity in a very natural way. This naturalness follows from the fact
that the most significant physical quantity of the QHEν = P/Q fits very well with the
integer (m in (2)) characterizing irreducible cyclic representations ofUq(sl(2)). Obviously,



Quantum Hall effect wavefunctions 3529

any set of orthogonal states possessing a quantum number which permits a partition of unity
like ν,

2p+1∑
i=1

ν(|i, 2p + 1〉)
p + 1

= 1

can be classified as irreducible cyclic representation ofUq(sl(2)) at a root of unity.
How can one utilize the proposed classification of the QHE to calculate some physical

quantities? Here, one of the most significant physical quantities is the partition function
which may be obtained if the Green function in the space defined byUq(sl(2)) at roots
of unity with cyclic representation is available. In [13] the Green function in the space
defined by theq-deformed groupSUq(2)/U(1) for q is not a root of unity, is obtained.
We hope that a similar calculation can be used in our case. Then, we can obtain the Green
function and in terms of that the related partition function which may give some hints about
its physical interpretation which is not clear at the moment.
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